What is NAD+?

It is the Key to More Energy and DNA Repair

NAD+ is a vital molecule that helps generate energy and repair damaged DNA in the human body by acting as a coenzyme and energy transfer helper during metabolic processes and is made from tryptophan through a series of steps requiring vitamins and minerals. Here’s some background on this molecule that keeps our bodies moving!

What is the function of NAD+?

NAD+ is a molecule that is important in the human body’s energy metabolism. It serves two important functions: it acts as a coenzyme in many of the body’s metabolic processes and as a little helper in transferring energy from one molecule to another during cellular respiration.

How is NAD+ made?

It is made through a series of steps that starts with the amino acid, tryptophan. Tryptophan is converted into another molecule called nicotinic acid, which is then converted into NAD+. This process is carried out by several enzymes in our cells and requires vitamins and minerals to be present. Once NAD+ is made, it can be used by our cells to help our body generate energy and repair damaged DNA!

How NAD+ levels affect our bodies

Low NAD+ levels are not a good thing! Here are some significant consequences it has on the body:

  • Aging:  Contributes to age-related diseases, such as cardiovascular disease, diabetes, and neurodegenerative disorders.[1]
  • Low energy levels: Low energy production, which contributes to fatigue and poor physical and mental performance.[2]
  • DNA damage: Increased risk of DNA damage and mutations.

NAD+ is a crucial molecule in the human body that helps generate energy and repair damaged DNA. Low levels of NAD+ can contribute to aging, fatigue, and increased risk of DNA damage. So, take care of your body and keep those NAD+ levels high!

[1] Frye, R. E., Jun, J., Papanicolaou, D. A., Hibshoosh, H., & Khalsa, D. S. (2017). Nicotinamide mononucleotide and related B-vitamins in aging and neurodegeneration. Aging, 9(5), 1276-1288.
[2] Gomes, A. P., Price, N. L., Ling, A. J., Moslehi, J. J., Montgomery, M. K., Rajman, L., … Simon, M. C. (2013). Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication During Aging. Cell, 155(7), 1624-1638.


Join Waitlist We will inform you when the product arrives in stock. Please leave your valid email address below.